Bentley HAMMER CONNECT Edition Help

Tracking the Air-Liquid Interface

The "Elevation Type" field in the Hydropneumatic tank properties allows you to control how the air-liquid interface (water surface elevation) is tracked. This field presents 3 options, Fixed, Mean Elevation and Variable Elevation.

Fixed

This is the default option for the "Elevation Type" field and is consistent with the behavior of previous versions (prior to 08.11.01.32). The liquid elevation is assumed to be at a fixed location during the transient simulation, equal to the bottom of the tank. The gas pressure used in the gas law equation is then equal to the hydraulic grade line within the tank, plus the atmospheric pressure, minus the tank's base elevation.

This is acceptable for most cases, mainly because the elevation difference between the range of possible liquid levels is typically quite small. So, it does not account for much of a pressure difference. This can be observed by adjusting the "Elevation" attribute in the tank properties.

Mean Elevation

Selecting "Mean Elevation" exposes the "Liquid Elevation (Mean)" field, which allows you to specify a custom liquid (water surface) elevation, instead of assuming it is equal to the tank bottom (as is with the "fixed" option). It represents the average elevation of the liquid/gas interface throughout a transient simulation. This is useful in cases where the liquid elevation is significantly higher than the tank bottom, but doesn't move significantly during a transient simulation. So, although no tracking of changes in liquid elevation occurs, it allows you to get a more accurate calculation in some cases. The absolute gas pressure used in the gas law equation during the calculations based on the mean elevation that you enter.

Variable Elevation

Selecting "Variable Elevation" exposes the "Variable Elevation Curve" field, which allows you to enter a table of liquid elevation versus equivalent diameter. The variable level hydropneumatic tank type is for users who have detailed information about the tank's geometry and want to perform as accurate a simulation as possible. Typically, this type of representation would be selected in the detailed design stage. It would also be appropriate in the case of low-pressure systems and/or relatively tall tanks with large movements of the interface relative to the HGL of the gas. The initial liquid level is determined from the initial gas volume which is an input parameter. The tank cross-sectional area at any elevation is interpolated from an input table of the vessel's geometry spanning the range from the pipe connection at the bottom to the top of the tank.

Reporting

After computing the transient simulation with a variable elevation hydropneumatic tank, you can view the liquid level over time by looking at the Transient Analysis Detailed Report. This report is found under Report > Transient Analysis Reports and will show this extended, tabular data for the tank when you've entered a value for the "report period" property of that tank.